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Abstract—A new boundary element formulation is presented for quasistatic thermoplasticity. The
governing integral equations utilize kernel functions based upon the fundamental solutions of
uncoupled thermoelasticity, thereby eliminating volume discretization except in regions where
plasticity occurs. As a result. the boundary element approach becomes an attractive alternative to
finite element methods, particularly for problems involving localized plastic effects. In addition, the
present work introduces a temperature-dependent strain-hardening material model and includes the
body heat sources dug to inclastic dissipation. The entire three-dimensional formulation has been
implemented in a general-purpose boundary element code. Details of this numerical implementation
are provided. along with results of several illusteative examples,

I. INTRODUCTION

In two previous papers (Dargush and Banerjee, 1989, 1990), boundary clement methods
{BEMs) were developed for lincar problems of quasistatic thermoelasticity. However,
contrary to common belicf, the method s also well suited for nonlinear analyses. For
example, the application of BEMs to time-independent plasticity is now standard textbook
information (c.g. Bancerjee and Butterticld, 1981), and, in some cases, significant compu-
tational advantages can be realized when compared with [finite elements. This is partic-
ularly true if the plastic region represents only a small portion of the total body. A
number of recent publications (Bancrjee and Raveendra, 1986 ; Banerjee ¢t «l., 1988, 1989)
provide the framework for advanced clastoplastic BEM analysis.

In the present work, the boundary element method will be extended to thermoplasticity,
including the effects of inclastic dissipation and a temperature-dependent yield surface. The
first step in this process will be the derivation of a simple, yet meaningful, thermoplastic
constitutive model in Section 2. Then, the integral formulation for gencralized displucement
rates and stress rates is developed in Section 3, based upon an initial stress approach. Armed
with these relationships, Section 4 details the numerical implementation. Included is a
description of the iterative time-marching process. However, to avoid unwarranted
repetition, only those portions of the implementation that deviate from the linear algorithms
{published earlier by Dargush and Bancrjee, 1989, 1990) are discussed.

Before proceeding, it should be noted that this extension to thermoplasticity represents
the very first BEM attempt at this class of problems. Much additional effort is required to
transform this into a practical engineering analysis tool.

2. THERMOPLASTIC CONSTITUTIVE EQUATIONS

Before deriving the boundary integral formulation for nonlincar quasistatic thermal
problems, a suitable material model is developed in this section. This new thermoplastic
model is primarily intended for demonstrative purposcs, and consequently has not been
tailored to any specific material. However, as a first approximation, the model is appropriate
for the analysis of a wide range of cngincering materials. In particular, the following
characteristics are included :

—time-independent behavior,
—temperature-dependent von Mises yield criterion,
—associative plastic flow,
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—temperature-dependent isotropic hardening.

—elastic unloading during either a reduction in equivalent stress at constant tem-

perature or a reduction in temperature at constant equivalent stress.

—recovery of temperature-independent elastoplastic behavior under isothermal con-

ditions.

The model is based upon a straightforward extension of classical plasticity. thus
retaining a formulation that requires only a minimal number of material parameters. It
should be noted that certain portions of the development presented below have been
extracted from Boley and Weiner (1960), where a temperature-dependent elastic—perfectly-
plastic model is constructed. Other concepts have been borrowed from the Moditied Cam
Clay models (Roscoe and Burland. 1968) of soil plasticity and. in a sense, can be considered
as an extension of the classical thermoelustic~poroelastic analogy.

As mentioned above, a temperature-dependent von Mises yield function is employed :

. o

Mo, 0.60) =J,— N r (n

where J, is the second invariant of the deviatoric stress tensor, o, is the material yield

strength in uniaxial tension at a reference temperature 0, and I is a non-dimensional
parameter that embodies the temperature dependence. Thus,

e o
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in which the deviatoric stress is given by
-
=a,- “)Ila’ik‘ (3)

Sll

Meanwhile, T is assumed to take the convenient, yet realistic, form

=1 0=l ¥ 4
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where 0, represents the melting temperature on an absolute scale. Additionally, the term
o, acquires the value of the reference temperature yield strength associated with the current
level of plastic strain.

This yicld function is graphically portrayed on a (J,)' *-f0 stress space plot in Fig. 1,
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Fig. 1. Yield function in stress space () = 0).
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where f is the material constant defined by
B = (3:+2u2x = 3K, (3

with K representing the bulk modulus. Typically, in isothermal metal plasticity. yielding is
related to the distortional components of deformation only. That is, dilatation is assumed
to have no effect on yield strength. However, Fig. I clearly indicates that for the thermo-
plastic model the thermal portion of dilatational deformation does indeed have an impact
on yield strength. Thus. even though the stress field is due exclusively to the mechanical
strain, the magnitude of the thermal strain still contributes to the determination of the
inception of yielding. In this regard, some parallels can be drawn to soil plasticity. For
example. the diagram in Fig. | strongly resembles the elliptical g —p relations used for
Modified Cam Clay models, in which ¢ is related to (J,)"* and p equals one-third of the
first invariant of the effective stress tensor. For this clay model. the quantity p and,
consequently, the yielding are dependent upon total dilatational deformation. Therefore.
in both thermal and soil mechanics, the phenomenon ol yielding is influenced by dilatational
as well as distortional components of the deformation, although, typically, in thermo-
mechanics only the temperature-induced portion of the dilatation is significant.

The next required ingredient is a plastic flow rule. The associated flow rule or normality
condition relates the plastic strain rate to the normal of the yield surface in stress space :

& =5 (6)

Finally, a work-hardening rule is nceded. To maintain simplicity, an isotropic harden-
ing model is selected. Figure 2 presents this expansion of the yicld surface versus accumu-
lated plastic strain in (J,)"*-f0 space. It should be noted that while isotropic hardening
is suitable for a {irst approximation, the model thus cannot predict many complex thermo-
mechanical behaviors.

Expressing fas a function of stress, temperature and plastic steain permits the con-
sistency condition to be writlen as

o e, of
df = 5&:a,,+aét)+ ur 5 = 0. @)

Now, returning to the task of developing an incremental constitutive relation, let
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Fig. 2. Expansion of the yield surface (#; = 0).
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¢
4, = ::C (8‘1)
‘e,
cf
Py = - C:.;b; {Sb)
cf
W = E‘é (SC)
Then, eqns (6) and (7) simplify to
& = iy, )
4,6, +wl—p, & =0, (10)

respectively, Also. the stresses can be related to the elastic strain &, via the mechanical
strain & and plastic strain &, as:

g, = Diw(én - (th)
Substituting (11) into {10) produces
G DG =) +wl—p, & =0, (12)
After using (9) in (12) and grouping terms, the following relation is obtained for £

¢ m .
e 4, DG+ wtf

A= . . (13
([,, I)l/qukl + ‘l://’,,
Next, from (93 and (11}
61y = Diw (&8 — i) (14)
and consequently,
. e m < qmn fmﬂ-sé!r‘: + u‘(} -
S = Didii = ”ffkf‘f“[z;;;o:‘,m.me;,.,,p;;,,‘ | ()

At this point, the explicit forms of ¢,,, p;, and w are needed to simplify (15). For the yic
function defined by eqn (1), these are, specifically.

g =S, (16a)

p., =3iHTa, (16b)
200 0

Cm b l16¢

" 3 ot;u:h ( (')

where H is the current slope of the uniaxial stress-plastic strain curve. Utilizing (16) and
some algebraic manipulation, eqn (15) can be transformed into

G, = D'Ren — B0 (amn

in which
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Dk = Dl —2u 265r(l+rﬁ) (18a)
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P (18b)
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This is the desired incremental constitutive relation for the present thermoplastic theory.
The above equations together with the modified loading and unloading criteria (Boley and
Weiner, 1960) provide a suitable first-order thermoplastic model.

3. INTEGRAL FORMULATIONS

In this section, the boundary integral formulation developed previously in Dargush
and Banerjee (1989, 1990) for thermoelasticity will be extended to include the effects of
plasticity. Basically, the initial stress approach, outlined in Banerjee and Butterfield (1981),
is adopted herein. For this approach, the incremental initial stresses are defined as

a',f)

o= 6%, —dy, 9

where

65, = Db — ff,(‘; (20)

and d,, is given by (17). This relationship between the initial, clastic and total stress rates
is illustrated in Fig, 3 for a onc-dimensional case. Now, upon writing the incrementil
equilibrium equation,

—at a4l &)
Gj =0 ~0,, = 0, (-”

it becomes obvious that the term —d)), can be treated as an incremental body foree. As a

result, the integral equation, developed from (21) and the appropriate reciprocal theorem
of lonescu-Cazimir (1964), will contain volume integrals due to the appearance of these

Fig. 3. [nitial stress definition.
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initial stresses. In addition, heat is generated through inelastic dissipation and must be
accounted for in the energy balance. This leads to the requirement for a body source in the
differental energy equation and another volume term in the integral formulation. The
resulting extension of the boundary integral equation of Duargush and Banerjee (1989, 1990)
can be written in incremental form as

Coa(Dig(E0) = J[o wE (X ) — Fye iy (X 0]AS (X))

B

+f [Qur* G Z. )+ Gy * ™ (Z. )]dV(Z).  (22)

where the heat sources are
0 . 5
WNZ. 1) = 0,8 (23)

with ¥ as a dimensionless material parameter specitving the portion of the inelastic dis-
sipation converted into heat. In eqn (22) and for the remainder of this paper, Latin indices
vary from one to three. Greek indices range from one to tour. except for the subscript 0
which assumes only the value of four. Furthermore, in three dimensions

wp = tuy oy, ou, ) (240)

=\t 1, Il g, (24b)

where ¢, is the surface traction vector and ¢ is the normal heat lux. The kernel Q.
appearing in (22), can be dertved from ¢, via

1 (oG, CGy, }
Q= | .+ . ) (25)

All of the kernels appearing in (22) are defined explicitly in the  Appendix for three-
dimensional bodics. This definition is consistent with the form of (22). Previously, in
Dargush and Banerjce (1990), the kernel functions were inadvertently transposed.

A closer examination of the Appendix reveals that all kernels can be decomposed into
steady-state and transient components, with the former containing singularitics and the
futter remaining non-singular. This characteristic was discussed in Dargush and Banerjee
(1989, 1990) for the boundary kerncels Gy, and £,. Since a derivative of G, is involved in
forming Q,,. the singularity in "Q,, has the sume order as that in *F,,. However, "0, ,
appears within a volume integral, whereas " Fy, is associated with a surface integral. This
increased dimensionality reduces the severitiy of the integration of “(Q,, to the weakly
singular variety. Therefore, numerical quadrature will be suitable for the evaluation of the
domain integrals appearing tn (22).

Next, notice that a considerable degree of coupling is embodied in eqn (22). In partic-
ular. the inclastic dissipation produces deformation along with the expected thermal response.
This coupling can be quite significant in practical problems. For example, whenever plastic
flow occurs in the metal, heat is generated via inclastic dissipation, thus clevating the
temperature locally. The resulting thermal gradients can combine, with a reduction in yield
strength due to thermal dilatation, to produce further plastic flow. In many instances, this
contribution of the inclastic dissipation must be included in the formulation to properly
monitor the movement of the plastic front and to determine residual stresses. Clearly, in
these cases. a coupled formulation, involving the simultancous consideration of equilibrium
and energy balance. is mandatory.

In thermoplasticity, the integral formulation explicitly involves initial stress and heat
source riates, which are not known a priori. Thus, eqn (22) alone is not sufficient to solve
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the thermoplastic problem. In general. the initial stress rates appearing in (22) must be
calculated from (19) through an iterative process. This, in turn, requires the evaluation of
the total stress rates d,,. Therefore. unlike the thermoelastic problem, the determination of
interior and boundary stress is no longer optional, but rather compulsory.

With that in mind, an integral expression for ¢,; can be derived directly from (22). For
points . not on the surface of the body

¢, {ln= [ {E;;,, * (X0 — 155,, *i, (X, )] dS(X)

o

+J [P Z, ’)]dV(ZH'JM/U'I?I(f» f)"”f [E}u/"ﬁo(zv ldvV(z) (26)
3 0

where Ej. Py, and Jyy,, are all defined in the Appendix.

The first volume integral. appearing in (26), must be evaluated over V'V, as V, -0,
where }, is a spherical exclusion centered about . This is required due to the strongly
singular nature of the Py, kernel. The term J,; results from the analytical integration of
Py, over V', for a locally-homogencous stress distribution. Since the singularity of the P,
kernel is identical to that present in the corresponding static plasticity stress kernel, Jy;; is
equivalent to the standard plasticity jump terms (Buanerjec and Raveendra, 1986).

However, for points £ on the boundary, egn (26) is no longer suitable due to the strong
singularitics in the surface integrals. Thus, for boundary stresses, an alternate procedure,
similar to that outlined in Banerjee and Raveendra (1986) and Dargush and Bancrjec
(1989). is utilized. The procedure involves the following relations,

¢, (E.0n,(3) = (&) (27a)
Loz _.Dfl“ Co(E .o N o (F 20 b
a6, (S 1) = - (i (. D)+ 0 (S, )] = B0, 0(S, 1) — a1, (S 1) (27b)
Ay (&t
e 0, (5.0 = ifﬁ§%—~v»3 (27¢)
5 2

in which ¢ represents the local coordinate system constructed on the surface at £. Equations
(27) can now be solved for g,; in terms of the incremental traction, displacements and initial
stresses without the need for temporal or spatial integration.

The integral expressions (22) and (26), along with relationships (27), provide the
foundation for the present boundary clement method for thermoplasticity. In the next
section, the numerical implementation of this new boundary element formulation is dis-
cussed.

4. NUMERICAL IMPLEMENTATION

4.1, huroduction

Most of the techniques discussed in Dargush and Banerjee (1989, 1990) for thermo-
cleastic implementation remain valid for thermoplasticity. Consequently, in the current
scction. only the items that differ substantially from those outlined previously will be
detailed. In the first subsection, some notational changes are introduced in an otherwise
identical, temporal discretization. These changes are the result of the incremental, rather
than total, formulation. Then, the following two subsections pertain to the domain dis-
cretization and integration, respectively. The corresponding surface operations were
described adequately in the aforementioned references. Assembly also remains as before,
except that matrices associated with the volume integrals must be collocated and stored.
However, the strategy of solution is quite different. Thus, the final subsection details the
iterative algorithm employed for the solution of the thermoplastic problem. This entire
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implementation was accomplished within the general purpose boundary element program
GPBEST.

4.2, Temporal discretization

For the temporal discretization, the time axis is subdivided tnto N equal increments.
Within each increment. the field variables are assumed constant. However, now, in the
thermoplastic formulation. these field variables are incremental quantities. This poses no
particular problem, therefore, following the temporal approximation, the integral equations
(22) and (26) can be written

A () = Y U (G "X =OALX) = F) (X = HA(X)] dS(Y)
n=1 ¥
+I Qi MZ-EAe(Z)+ G M Z - AY™(Z)) dV(Z)} (28a)

Aai(&) = Y. U LERT (X =DAX) =Dy (XY = HAG(XN] S (X)

n=1

+J[P?}f,' "(Z-§)Aﬂl»'/"(2)+547,,"‘"(Z~5)A'1/”"(Z)](”’(Z)}‘M:,,AG?IV(E). (28b)

Notice that in (28), the rate form of the ficld vanables that appeared in (22) and (26) has
been replaced., appropriately, by an incremental form. This is consistent with the temporal
approximation of constant field variables within cach time increment. Also, note that the
superseript ” represents an initial stress or initial heat source while " refers to the time
increment index. Occasionally, in the following, " will assume a specific integer value;
however, in all cases where both are used. the ? will appear first to avoid confusion.

n

4.3. Spatial discretization

The surface discretization proceeds exactly as for thermoclasticity by subdividing the
boundary into clements defined by nodal points and shape functions. In thermoplasticity,
since volume integrals appear in eygns (28), the domain must also be modeled. However,
this domain discretization can be restricted to the regions in which plasticity occurs. In
many practical problems, this plastic region may amount to only a small percentage of the
total body. The remainder of the volume is thermoelastic. Consequently, initial stresses and
heat sources in these regions are zero, and the volume integrals vanish, thereby eliminating
the need for any discretization. This constitutes a significant advantage over domain-based
approaches, such as the finite element method.

For the regions in which plasticity is expected, the volume is subdivided into cells. The
geometry of each cell is again defined by nodal points and quadratic shape functions. A 20-
noded solid cell is used. The quadratic geometric variation permits the representation of
intricate shapes with a minimal number of cells. Meanwhile, cither a lincar or quadratic
variation can be employed for the functional representation. Formally, then, for any cell,

Z(C) = ::(C) = “!-‘(;):m‘ (29)
Aciy () = M, (DAa], (30a)
AY™(Q) = M (DAY (30b)
where
{ intrinsic coordinates
M., .M, shape functions

z. nodal coordinates of cell
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Acly, nodal values of incremental initial stess
AyY  nodal value of incremental initial heat source.

In the above, the index w varies from one to the number of geometric nodes, while w ranges
from one to the number of functional nodes in the cell under consideration. It should be
emphasized that only the incremental initial stress and heat source are represented by these
shape functions. The variation of incremental displacement and temperature is not at all
restricted within the cell. Consequently, steep temperature gradients, that develop near the
surface due to sudden thermal loading, can still be captured without the need for an
excessive number of cells. On the other hand. the finite element method often requires an
extremely fine mesh to properly represent the severe gradients.

With the above spatial discretization in mind, the integral equations can now be
rewritten. For the incremental generalized displacement this becomes

N M
l(OAu () = 3 { 2. [AIE,.,J; Gt (X (O = DN AS(X()

A=l \m=i '

—Auj, J. Fit X Q) =N dS(X(C))]
Sm

L
+ Y [Aaﬁﬁ,J Qi MZEQ) = HMOAV(Z(N)
mae | 4™

+ A .f’."f Gyt "'(Z(C)—s‘)M.,.(C)dV(Z(C))]} (3la)
v,
wherc
L
V=3 Va
m- |

and L is the number of volume cells. A similar transformation occurs for the incremental
stress egn (28b), producing

Aay() = ¥ { Z [A’ﬂmﬁ Eyi(X () =N dS(X (D)

n=1 \ma |’

—Aug, L Dy (X(Q) = INL) dS(X(C))}

L
+ ) [AG?/’.'.,L Py MZ ) = HML(AV(Z (D)

mw= |

+Ay J; Ex'MZ©Q =M, (Dd V(Z(O)]}
+ oy Aol (). (31b)

In these equations, M is the total number of boundary clements, while Atj,, and Auj,, arc
the generalized incremental nodal tractions and displacements, respectively. Furthermore,
N,() is the shape function defining the variation of Ar; and Awj within an clement.

4.4. Numerical integration

The integration techniques required for the evaluation of the surface integrals appear-
ing in (31) have been extensively discussed in Dargush and Banerjee (1989, 1990). Thus, in
this subsection, only the volume integrals will be discussed. Recall, from eqn (26), that the
strong singularity in the domain integral involving the P, kernel was removed via analytical

5A3 28:5-C
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integration. {The result of this analytical integration is the J,,, jump term in eqn (31b)].
Conscquently. all of the remaining volume integrals are. at worst, only weakly singular.
and Gaussian quadrature is appropriate. As with the surface integration techniques, sub-
segmentation and vanable quadrature order are used to control error. Separate schemes
are employed for singular and non-singular cases. Specific details of this volume integration
algorithm which is identical to the ordinary elastoplastic case can be found in Mustoe
(1984) and Banerjee and Raveendra (1986).

4.5. Solution algorithm

The assembly process proceeds as in the thermoelastic case, except that an additional
collocation is required for the volume nodes. Therefore. after assembly, the following two
sets of algebraic equations are produced. based upon (314) and (31b). respectively:

(4] = [B'HAY —[Q 140"} —[Gi]1AY" ) +{R "} (32a)

i

WAcY) = —[E'NAM ]+ [D'][AY) = [P']186"} — [E;11 A" 1 + (R} (32b)

where
Vol
:R\} - - Z ([G\'pl n]:A[n}_[F‘\gl "]:All""*"[(_)"l nl A(’,Un|+[(-’\.\ n] Aw(ln]
n-
(33a)
vl
:Rn\: = Y ([[\pl u] A[n) [1)‘\4»1 "]:AN":’F[PV” ”]:A(T“" +[l'\~| II]{A(I’”"})‘
n—l
(33b)

represent the effect of past events. In these questions, all of the matrices correspond 1o
kernels present in (31), except Yor [A'] and [8'] which are formed from [£'] and [G'). The
matrix [P'] contains the contributions of the jump terms J,,, along with results of the
volume integration of the P/, kernel. Additionally,

{AxY}  unknown components of {Au*! and {ArY)
!AyY}H  known components of fAut} and [ArY].

At first glance, it may appear that a prodigious amount of work is required to form {R"}
and {R)) at cach time step. However, such is not the case because of the nature of the
thermoclastic fundamental solutions which form the basis of all of the kernel functions.
In fact, only a small portion of {G"]. {F"]. [E"] und [D"] is time dependent. The remaining
terms vanish from (33), as do the entire {Q"] and [P"] contribution. As a result. eqns (33)
simplify to the following :

{R‘: - Z ([G,}’l n](Aqnl_[I\»l u](Ann\+[G\+~l—n]rA//(lnb (34“1)
n- |

:R;: _ Z ([E"H -n lAqn}_[Di‘\'a-l n](A”nl +[F‘v+| "]{Al[/“"}). (34b)
LEN!

Thus. convolution is only required for the fux. temperature and body source contributions,
and the entirc boundary element formulation becomes extremely attractive for thermo-
plastic analyses.

The solution of (32) requires the complete knowledge of the incremental initial stresses
and heat sources in the plastic region. Since these items are not known a priori, an iterative



BEMs for 3-D thermoplasticity 559

scheme must be introduced. In the present work. an algorithm, developed originally by
Ahmad and Banerjee (1990) for transient dynamic plasticity. is emploved.

It should be noted that in this iterative scheme, the non-linearities enter the formulation
entirely through the right-hand side contributions from the initial stresses and body heat
sources. As a result. the system matrix [4']. which must be decomposed, remains identical
to that used in the comparable boundary-only thermoelastic analysis.

The algorithm can also provide solutions for steady-state thermoplasticity. In such
problems. time becomes strictly a pseudo quantity. Consequently, the inelastic dissipation
effects vanish. the kernels simplify considerably, and convolutions are no longer required.
Since. in practical terms. steady-state thermoplasticity is an important subset of the general
theory, a streamlined algorithm for this static problem has been included in the numerical
implementation.

5. APPLICATIONS

5.1 Slow heating of an aluminum block

As a first demonstration example, the slow heating of a partially restrained aluminum
block is considered. A lin.x lin.x lin. block. resting stress free at 0 'F, is constrained
against lateral deformation in the X and Z directions. but permitted to elongate freely in
the Y direction. The face at ¥ = 1.0 in. is elevated very slowly to a final temperature of
200 F, while the remaining five faces are insulated. For this example, it is assumed that the
rate of heat input is such that the steady-state thermoplastic formulation applies.

The following standard thermoclastic material properties for aluminum are utilized :

£ = 10x 10" psi, v =0.33,
a=13x10°* F-',
k=25in.~1Ib. (sin. "F) ', pe, =200in.—=1b. (in." 'F) .

In addition, to obtain the thermoplastic response, the aluminum is modeled as a temperature-
independent von Mises material with isotropic hardening. A yield stress of 10,000 psi is
specified, along with a constant hardening modulus of 2 x 10" psi representing the slope of
the uniaxial stress - plastic strain curve,

A simple six-clement, 20-node boundary clement mesh is employed along with a single
20-node volume cell. A steady-state analysis is then performed with GPBEST at five distinct
temperatures ranging from 100 to 200 F. [n addition, for comparative purposes, this
same problem is examined using BEST3D, the three-dimensional boundary element code
developed for NASA (Wilson er «f., 1984, 1986). In BEST3D, the temperatures throughout
the body must be specified « priori. These temperatures are then included as body forces in
the volume integrals.

From Figs 4 and 5. it is evident that GPBEST precisely reproduces the deformations
and stresses obtained from BEST3D, thus validating the present thermoplastic formulation.
Notice that in these figures, the thermoelastic solution is also plotted for reference. Of
course, with thermoplastic effects included. increased clongations and greatly reduced
confining stresses result.

5.2. Sudden heating of an aluminum block

Next, the same aluminum block is investigated under quasistatic conditions. In the
present problem, with the block initially at zero temperature, the face at Y= 1.0 in. is
suddenly raised to 200 F. This, of course. triggers a transient heat conduction process.
Thus, the full time-dependent thermoplastic algorithm is utilized. The remainder of the
boundary conditions. along with the matcrial propertics and boundary element modecl, are
identical to those prescribed in the previous problem.

Once again in addition to the GPBEST analysis, the problem was examined with
BEST3D. In the latter instance, exact temperatures, based upon the solution defined in
Carslaw and Jaeger (1947), were input for each nodal point. Figure 6 displays the total
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Thermoplasticity

aia
|
3
—— Elastic Solution ;
aasr x BEST3D {
[ o GP-BEST !
t
C } . ‘
= Lees - - |
s !
= :
pe) - ’
b i
= |
5 .ees ] i
w i
. |
|
e f
.o0m | — L L L . J

a. ECR 100, 152. 20, 2sa.

Temperature (°F)

Fig. 4. Slow heating of an aluminium block-—elongauoen.

elongation of the block as a function of time, Slight deviations occur during the first few
times steps due primarily to inaccuracies in modeling the early stages of this sudden thermal
ditfusion process. [See Dargush and Buanerjee (1991) for a full discussion of this difticulty.]
In general, however, the correlation is good. As expected. the correlation of confining stress
is not quite as good. From Fig. 7, obviously considerable deviation is present during the
inttial few seconds. Afterwards, as the GPBEST temperature profile approaches the exact
solution, the stresses from GPBEST and BEST3D correspond within a few per cent, 1
morce accuracy is desired in the carly stages of the process, additional mesh and time step
refinement is in order.

5.3, Residual stress in a steel eyvlinder

The final example involves determination of the restdual stresses resulting from the
rapid cooling of a long, 2.5 in, diameter steel cylinder. This cylinder is initially in a stress-
free state at 1250 F, and then suddenly exposed to an 80°'F fluid. A film coefticient of
f=1225 in.—1lb. (s in.” "F) ' is specified on the cylindrical surface for the ensuing
CoNveCtive process.

Thermoplasticity
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Fig. 5. Slow heating of an aluminium block —confining stress.
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Thermoplasticity
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Fig. 6. Sudden heating of an aluminium block—elongation.

The following standard thermoclastic material properties are employed for 1060 steel :
L =30x 10° psi, v = 0.30,
a=6x10"%"TF"",
k=58in.~1Ib, (sin. "F) ', pc,

283in.—1Ib. (in.* 'F) .

Additionally, a temperature-dependent thermoplastic constitutive model is adopted. In
particular, the definitions in eqns (1) and (4) apply, with o, = 48 ksi and 0, = 1300 F.
Zero hardening is assumed.

The boundary element surface model, displayed in Fig. 8, consists of 38 source points
and 12 elements, while the complete description of the interior requires one extra node and
three volume cells. After some numerical experimentation, a time step of 4 s was selected.

Figure 9 shows the temperature response as a function of time for the surface (r = 1.25in.)
and center (r = 0) of the cylinder at mid-height. Mcanwhile, axial stresses at those same

Thermoplasticity
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Fig. 7. Sudden heating of an aluminium block—confining stress.
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Fig. 8. Residual stress in a steel evlinder —boundary element model

locations are traced in Fig. 10. Notice that rapid cooling of the surface occurs during the
first few scconds. This produces tensile stress in the outer portions and compression toward
the center. However, throughout this initial period, the material remains quite hot, and
consequently, has a relatively low yield. As a result, significant plastic deformation occurs.

After the beginning 10 s, the yield stress s clevated considerably and the all important
thermal gradients diminish, so that no further plastic flow takes place. Instead, clastic
unloading commences. At about the 40 s mark, the axial stresses change signs. Thus, the
outer fibers go into compressions, while tension oceurs in the central portion. This trend
continues to steady-state, although for the present analysis, the problem was terminated
after the eylinder cooled for 80 s. At that time, the axial stress on the surlace and at the
center are —20.5 and +21.1 ksi, respectively. Of course, the magnitudes of the residual
stresses al steady state would be slightly higher.

6. CONCLUSIONS

A new boundary element method was developed for quasistatic problems of thermo-
plasticity. Naturaily, with the introduction of nonlincarities, the integral cquations can no
fonger be formulated strictly in terms of boundary quantitics. Volume discretization is

159,

teea.

75Q.

Temperature (°F)

£ =1.25 in.

Room Temperature

Time (sec)

Fig. 9. Residual stress in a steel cylinder—GPBEST temperature results.
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Fig. 10. Residual stress in a steel cylinder—GPBEST axial stress results.

required, but only in the plastic regions, Often, this nonlinearity may be confined to a small
portion of the body. For those cascs in particular, the BEM is an attractive alternative to
finite clements.

A thermally-sensitive von Mises plasticity model with isotropic hardening was derived
for use in the BEM. While this constitutive model contains some important features of
metal plasticity, it is primarily intended for the purpose of demonstration. In future work,
the modcl will be replaced by more sophisticated versions which include multi-surfuace
kinematic hardening and time-dependent phenomena (i.c. creep) at elevated temperatures.
It should be emphasized, however, that even with enhanced material models, the integral
formulation and kernel functions, which are presented herein, will remain intact.

Details of the numerical implementation have also been provided. Significant improve-
ments are still needed, however, in the iterutive schemes in order to produce a general-
purpose engincering analysis tool. Finally, several numerical examples were presented to
demonstrate the validitiy of this thermoplastic BEM formulation, and, hopefully, to create
interest in its continued development,
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APPENDIX: KERNELS FOR THERMOPLASTICITY

This Appendix contains the detailed presentations of all the kernel functions utilized in the three-dimensional
tormulation. based upon continuous-source uand force-fundamental solutions (Dargush. 1987). For the time-
dependent problems, the following relationships must be used to determine the proper form of the functions
required in the boundary element discretization. That is.

Gl X =3) = G (XN =Sondo) for n=1
GV =) = G X =3 nAn) -G (X =S(n=DAn for n> 1,
with similar expressions holding for all the remaining kernels. In the specitication of these kernels below, the

arguments (X — ¢, ¢) are assumed.
Note that the indices

i jok.d vary from L to 3
2. ff vary from 1 to 4
) cquals 4.

Additionally,
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For the displacement kernel,

In the above,

¢ = kipe,

 ( i
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Additionaily, for the volume kernels
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