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Abstra<:t-A new boundary element formulation is presented for quasistatic thermoplasticity. The
governing integral equations utilize kernel functions based upon the fundamental solutions of
uncoupled thermoelasticity. thereby eliminating volume discretization except in regions where
plasticity occurs. As a result. the boundary element approach ~'Comes an attractive alternative to
finite element methods. particularly for problems involving IOl:alized plastil: effects. In addition. the
present work introdul:es a temperature-dependent strain-hardening material model and includes the
body heat sources due to inelastic dissipation. The entire three·dimensional formulation hilS been
implemented in a general-purpose boundary element I:ooe. Details of this numericill implementation
ilre provid\.-d. along with results of several illustrative examples.

1. INTRODUCTION

In two previous papers (Dargush and Banerjee. 1989. 1990). boundary clement methods
(BEMs) were developed for linear problems of quasistatic thermoclasticity. However.
contr.lry to common belief. the method is also well suited for nonlinear 'Inalyses. f-or
examph:. the upplicalion or BEMs to time-independent plasticity is now standard textbook
information (e.g. Banerjee and Butterfield. IlJSI). and, in some cases, significant compu­
t•• tional udvantages can be re.tlized when compared with finite elements. This is partic­
ularly true if the plastic region represenls only u small portion of the totul body. A
number of recent publications (Hanerjee and Raveendra. 1986; Hanerjee ,'I (/1., 1988, 1989)
provide the framework for adv'lI1ced c1ustop/;lstic HEM analysis.

In the present work, the boundary clement method will be extended to thermoplasticity.
including the effects of inelastic dissipation and a temperature-dependent yield surface. The
first step in this process will be the derivation of a simple. yet me.tningful. thermoplastic
constitutive model in Section 2. Then. the integral formulation for generalized displacement
rates and stress rates is developed in Section 3. based upon an initial stress approach. Armed
with these relationships, Section 4 detuils the numeric.tl implementation. Included is a
description of the iterative time-marching process. However. to avoid unwurranted
repetition. only those portions of the implementation thut deviate from the !incur algorithms
(published earlier by Dargush und B'lI1erjee, 19i'l9. 1990) arc discussed.

Before proceeding. it should be noted that this extension to thermoplasticity represents
the very first BEM attempt at this class of problems. Much additional effort is required to
transform this into a practical engineering anulysis tool.

2. THERMOPLASTIC CONSTITUTIVE EQVATIONS

Before deriving the boundary integral formulation for nonlinear quasistatic thermal
problems, a suitable material model is developed in this section. This new thermoplastic
model is primarily intended for demonstrative purposes. und consequently has not been
tailored to any specific material. However. as a first approximation. the model is appropriate
for the analysis of a wide range of engineering materials. In particular, the following
characteristics are included:

-time-independent behavior.
-temperature-dependent von Miscs yield criterion,
-ussociative plastic flow.
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-temperature-dependent isotropic hardening.
-elastic unloading during either a reduction in equivaknt stress at constant tem-

perature or a reduction in temperature at constant equivalent stress.
-recovery of temperature-independent elastoplastic beha\ ior under isothermal con­

ditions.

The model is based upon a straightforward extension of cI;1ssical plasticity. thus
retaining a formulation that requires only a minimal number of material parameters. rt
should be noted that certain portions of the development presented below have been
extracted from Boley and Weiner (1960). when: a temperature-dependent e1astic-perfectly­
plastic model is constructed. Other concepts have been borrowed from the Moditied Cam
Clay models (Roscoe and Burland. 1968) of soil plasticity and. in a sense. can be considered
as an extension of the classical thermoelastic-poroelastic analogy.

As mentioned above. a temperature-dependent von Mises yield function is employed:

( I)

where J1 is the second invariant of the deviatoric stress tensor. (1, is the material yield
strength in uniaxial tension at a reference temperature O'd' and r is a non-dimensional
parameter that embodies the temperature dependence. Thus.

(2)

in which the deviatoric stress is given hy

(3)

Meanwhile. r is assumed to take the eonvcnient. yet realistic. form

(4)

where (}mdl represents tht.: mt.:lting tempt.:wture on an absolutt.: scale. Additionally. the tt.:rm
(1\. acquires the value of tht.: reference temperature yield strength associated with the current
lcvel of plastic strain.

This yidd function is graphically portrayed on a (J 2) I ! ~/W stn:ss space plot in Fig. I.

1..--------------......-.... 136
1!6melt

Fig. I. Yield function in strcss spacc (/I", 01.
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where fJ is the material constant defined by

fJ = (3i.+ljl):X = 3K:x.

551

(5)

with K representing the bulk modulus. Typically. in isothermal metal plasticity. yielding is
related to the distortional components of deformation only. That is. dilatation is assumed
to have no effect on yield strength. However. Fig. I clearly indicates that for the thermo­
plastic model the thermal portion of dilatational deformation does indeed have an impact
on yield strength. Thus. even though the stress field is due exclusively to the mechanical
strain. the magnitude of the thermal strain still contributes to the determination of the
inception of yielding. In this regard. some panlllels can be drawn to soil plasticity. For
example. the diagram in Fig. I strongly resembles the elliptical q - p relations used for
Modified Cam Clay models. in which q is related to (J2 ) I. ~ and p equals one-third of the
first invariant of the effective stress tensor. For this clay model. the quantity p and.
consequently. the yielding are dependent upon total dilatational deformation. Therefore.
in both thermal and soil mechanics. the phenomenon ofyielding is influenced by dilatational
as well as distortional components of the deformation. although. typically. in thermo­
mechanics only the temperature-induced portion of the dilatation is significant.

The next required ingredient is a plastic flow rule. The associated flow rule or normality
condition relates the plastic strain rate to the normal of the yield surfilce in stress space:

(6)

Fimllly. a work-hardening rule is needed. To maintain simplicity. an isotropic harden­
ing model is selected. Figure 2 presents this expansion of the yield surface versus accumu­
lutcd phlstic strain in (J2 ) I'~_,W SP:ICC. It should be notcd that while isotropic hardening
is suitahle for a /irst :Ipproxirnation, the model thus cannot predict many complex thermo­
mech:lnical behaviors.

Expressing f as a function of stress. temper:lture and plastic strain permits the con­
sistency condition to be written :IS

. {if. vf N .
dJ =--a,+-'(}+ - f:f = O.va" '()O <Jef, J

Now. returning to the task of developing an incremental constitutive relation. let

Increasing foP (Strain hardening material)

l-----------='I.---_fl8

Fig. 2. Expansion oflhe yield surface (0.., =0).

(7)
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cf
11'=-cO'

(8a)

(8b)

(8c)

Then, eqns (6) and (7) simplify to

(9)

( 10)

respectively. Also, the stresses can be related to the elastic strain f;~, via the mechanical
strain s~ and plastic strain sf, as:

(II)

Substituting (II) into (\ 0) produces

(12)

After using (9) ill (12) and grouping terms, thc following relation is obtained for X:

( D)

Next, from (9) allu (II)

( 14)

allu consellucntly,

(15)

At this point, the explicit forms of ClII' Pil and If are needed to simplify (15). For the yi~

function detined by ClIn (I), thesc are, specifically,

([" = S"

P,} = ~lIr(1"

2a; 0
l" =---,.,- -""-,.

3 O;;'c11

(16a)

( 16b)

( 16c)

where H is the current slope of the uniaxial stress-plastic strain curve. Utilizing (16) and
some algebraic manipulation, eqn (15) can be transformed into

( 17)

in which
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(l8a)

( 19b)

This is the desired incremental constitutive relation for the present thermoplastic theory.
The above equations together with the modified loading and unloading criteria (Boley and
Weiner. 1960) provide a suitable first-order thermoplastic model.

3. INTEGRAL FORMULATIONS

In this section. the boundary integral formulation developed previously in Dargush
and Banerjee (1989. 1990) for thermoelasticity will be extended to include th~ effects of
plasticity. Basically. the initial stress approach. outlined in Banerjee nnd Butterfield ( 1981).
is adopted herein. For this approach. the incremental initial stresses ~lre defined as

(19)

where

(20)

und tTll is given by (17). This relationship between the initial. eh.stic and total stress r<ltes
is iIIustratl:d in fig. 3 for a om:-diml:nsional case. Now. upon writing the incremental
cquilibrium cquation.

(11 )

it becomes obvious th.. t the term - dl(~.1 can be tn:..ted as an im.:rement;.tl body force. As ;..
result, the integral equation, developed from (21) .md the appropriate reciprocal theorem
of lonescu-Cazimir (1964), will contuin volume integrals due to the appearance of these

a

---[------ --'0
. a

a-

a

-f-

Fig. J. Inttial stress: definition.
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initial stresst:s. In addition. ht:at is gent:rated through inelastic dissipation and must be
accounted for in the energy balance. This leads to the requin:mt:nt for a hody sourct: in tht:
difft:rential t:nt:rgy equation and anotht:r volume term in the integral formulation. Tht:
resulting extension of the boundary integral equation of Dargush and Banerjt:e (1989. 1990)
can be writtt:n in incremt:ntal form as

Cfix(';)li/f(';.t) =f[Gux*ijdX.t)-Fjh*liji(X.n]dS(X)

+ f[Qlh *ci-:~(Z./)+G", *1~rl(Z. I)] dV(Z). (22)

where the heat sources are

(23)

with { as a dimensionless material parameter specifying the portion of the inelastic dis­
sipation converted into heat. In eqn (22) and for the remainder of this paper. Latin indices
vary from one to three. Greek indices range from one to four. except for the subscript II
which assumes only the value of four. Furthermore. in three dimensions

lI/1 = : III II • II \ II ;

(/i = : ( I ( 2 / \ (/ i

(24a)

(24b)

where /, is the surface traction vector and if is the normal heat llux. The kernel Q'k>'
appearing in (22). can be derived from (i" via

(25)

All of the kernds appearing in (22) arc detined explicitly in the Appendix for three­
dimensional bodies. This definition is consistent with the form of (22). Previously. in
Dargush and B.merjee (1990). the kernel functions were inadvertently transposed.

A closer examination of the Appendix reveals that all kernels can he decomposed into
steady-state and transient components. with the former containing singularities and the
latter remaining non-singular. This characteristic was discussed in Dargush and Banerjce
(1989. 1(90) for the boundary kernds GIl> and Fflx. Since a derivative of (j" is involved in
forming QI." the singularity in "Q'b has the sallle order as that in "F/ f ,. However. "Q,,,
appears within a volume integral. whereas "Fflx is associated with a surface integral. This
increased dimensionality reduces the severitiy of the integration of "Qlk> to the weakly
singular variety. Then:fore. numerical quadrature will be suitabh.: for the evaluation of the
domain integrals appe'lring in (22).

Next. notice that a considerable degree of coupling is embodied in eqn (22). In partic­
ular. the inelastic dissip'ltion produces deformation along with the expected thermal response.
This coupling can be quite significant in practical problems. For example. whenever plastic
now occurs in the metal. heat is generated via inelastic dissipation. thus elevating the
temperature locally. The resulting thermal gradients can combine. with a reduction in yield
strength due to thermal dilatation. to produce further plastic now. In many instances. this
contribution of the inelastic dissipation must be included in the formulation to properly
monitor the movement of the plastic front and to determine residual stresses. Clearly. in
these cases. a coupled formulation, involving the simultaneous consideration ofequilibrium
and energy balance. is mandatory.

In thermoplasticity. the integral formulation explicitly involves initial stress and heat
source rates. which are not known a priori. Thus. eqn (22) alone is not sufficient to solve
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the thermoplastic problem. In general. the initial stress rates appearing in (22) must be
calculated from (19) through an iterative process. This, in turn, requires the evaluation of
the total stress rates nlj' Therefore. unlike the thermoelastic problem. the determination of
interior and boundary stress is no longer optional, but rather compulsory.

With that in mind. an integral expression for nij can be derived directly from (22). For
points .;. not on the surface of the body

all (.;. t) = [[Elll[ * t~(:f. t) - DpI, * lill(X. t)] dS(X)
.'

where E/li ,. Pklii and Jklii are all defined in the Appendix.
The first volume integral. appearing in (26), must be evaluated over V-V. as V£ -+ O.

where V,. is a spherical exclusion centered about ~. This is required due to the strongly
singular nature of the Pk1lf kernel. The term Jklij results from the analytical integration of
Pk1lf over V,. for a locally-homogeneous stress distribution. Since the singularity of the PHi;

kernel is identical to that present in the corrcsponding static plasticity stress kernel, Jklij is
c4uivalent to the standard plasticity jump tcrms (Banerjec and Raveendra, 1986).

However. for points ~ on thc ooundary. e4n (26) is no longer suitable due to the strong
singularities in the surface integrals. Thus. I()r boundary stresses. an alternate procedure,
similar to that outlined in Banerjee and Raveendra (1986) and Dargush and Banerjee
( Il)S9). is utilized. The procedure involves the following relations.

in which ~ represents the local coordinate system constructed on the surface at e. Equations
(27) can now be solved for a,/ in terms of the incremental traction, displacements and initial
strcsses without the need for temporal or spatial integration.

Thc integral expressions (22) and (26). along with relationships (21), provide the
foundation for the present boundary clement method for thermoplasticity. [n the next
sCl:tion. the numeril:al implementation of this new boundary element formulation is dis­
cussed.

... NUMERICAL IMPLEMENTATION

4.1. f11froductioll
Most of the techniques discussed in Dargush and Banerjee (1989. 1990) for thermo­

e1e:lstic implementation remain valid for thermoplasticity. Consequently. in the current
section. only the items that differ substantially from those outlined previously will be
detailed. In the lirst subsection. some notational changes are introduced in an otherwise
identical. temporal discretization. Thcse changes are the result of the incremental, rather
than tota!' formulation. Then. the following two subsections pertain to the domain dis­
cretization and integration. respectively. The corresponding surface operations were
described adequately in the aforementioned references. Assembly also remains as before.
except that matrices associated with the volume integrals must be collocated and stored.
However. the strategy of solution is quite different. Thus. the final subsection details the
iterative algorithm employed for the solution of the thermoplastic problem. This entire
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implementation was accomplished within the general purpose boundary element program
GPBEST.

4.2. Temporal disereti:ation
For the temporal discretization. the time axis is subdivided into N equal increments.

Within each increment. the field variables are assumed constant. However. now. in the
thermoplastic formulation. these field variables are incremental quantities. This poses no
particular problem. therefore. following the temporal approximation. the integral equations
(22) and (26) can be written

Cflx(~)~IIJ(~) ="t {f [Gf~,-r I-"(X - ~)~r;;(X) - Fd,- I -"(X - ~)~lt/J(X)I dS(X)

+J[Q ,~; I'"(Z - ~)~(1;1"(Z) + G ,,~+ I -"(Z _~)~t/J()n(z)]d V(Z)} (28a)

~(1;~(~) = 'It {f [£,y.r I-"(X - ~)~tii(X) - D;.r I-"cr- ~)~lIii(X)1 dS(X)

+f [Pk\'~ I "(Z - ~)~(T~i'(Z) + £,;,,+ I '"(Z -~)~",I)"(Z)1d V(Z) }+Jk",~(T2/V(~). (28b)

Notice that in (2X). the rate form of the field variables that appeared in (22) and (26) has
heen replaced. appropriately. by an incremental form. This is consistent with the temporal
approximation of constant lick! variahles within each time increment. Also. note that the
superscript I) represents an initial stress or initial heat source while" refers to the time
increment index. Occasionally. in the following. " will assume a specitic integer value;
however. in all eases where both arc used. the l) will appear lirst to avoid confusion.

4.3. 5,putial disereti:atiIJ/l
The surface discretization proceeds exactly as for thermoelasticity by subdividing the

boundary into dements defined by nodal points and shape functions. In thermoplasticity.
since volume integrals appear in egns (28). the domain must also be modeled. However.
this domain discretization can be restricted to the regions in which plasticity occurs. In
many practical problems, this plastic region may amount to only a small percentage of the
total body. The remainder of the volume is thermoelastic. Consequently, initial stresses and
heat sources in these regions are zero, and the volume integrals vanish, thereby eliminating
the need for any discretization. This constitutes a significant advantage over domain-based
approaches, such as the tinite elc:ment method.

For the regions in which plasticity is expected, the volume is subdivided into cells. The
geometry of each cell is again defined by nodal points and quadratic shape functions. A 20­
noded solid cell is used. The quadratic geometric variation permits the representation of
intricate shapes with a minimal number of cells. Meanwhile, either a linear or quadratic
variation can be employed for the functional representation. Formally, then, for any cell,

Z(O = :,(') = M .. (C)=,.·

where

, intrinsic coordinates
AI•• A{'J shape functions

:,., nodal coordinates of cell

(29)

(30a)

(30b)
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1111,c:::. nodal values of incremental initial stess
I1t/1:!:' nodal value of incremental initial heat source.

In the above, the index w varies from one to the number ofgeometric nodes. while w ranges
from one to the number of functional nodes in the cell under consideration. It should be
emphasized that only the incremental initial stress and heat source are represented by these
shape functions. The variation of incremental displacement and temperature is not at all
restricted within the cell. Consequently, steep temperature gradients. that develop near the
surface due to sudden thermal loading. can still be captured without the need for an
excessive number of cells. On the other hand. the finite element method often requires an
extremely fine mesh to properly represent the severe gradients.

With the above spatial discretization in mind, the integral equations can now be
rewritten. For the incremental generalized displacement this becomes

-l1u;;", 1~ F;,+,-n(Xm-~)N",mdS(X(C»J

+ ±[I1Q::, r. Q::'-n(Z(O-';)AJ",(OdV(Z(C»
",.,.1 Jl-'.."

+MI,~n 1~ G;~'I-n(Z(O-~)M",(odV(Z(C))J} (3Ia)

where

and L is the number of volume cells. A similar transformation occurs for the incremental
stress eqn (28b), producing

11(J;~(';) = ntl LtIM;:..,f~~ Ef/,j(X(() - ~)N<,,(() dS(X(O)

-I1U/Jtn1.. Df/ij(X(C) - .;)N., CO dS(X(mJ

+ ±[11l1r;:" r, Pk~ijl-n(Z(C)-e)Mw(OdV(Z(m
m- I J~~

(3Ib)

In these equations. M is the total number of boundary elements, while M;:,,, and l1up.., arc
the generalized incremental nodal tractions and displacements, respectively. Furthermore.
Nwm is the shape function defining the variation of I1t~ and l1u~ within an clement.

4.4. Numerical integration
The integration techniques required for the evaluation of the surface integrals appear­

ing in (31) have been extensively discussed in Dargush and Banerjee (1989. 1990). Thus. in
this subsection, only the volume integrals will be discussed. Recall, from eqn (26), that the
strong singularity in the domain integral involving the Plclij kernel was removed via analytical

SAS ~8:~-C
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integration. [The result of this analytical integration is the Jk", jump tenn in eqn (3Ib)].
Consequently. all of the remaining volume integrals are. at worst. only weakly singular.
and Gaussian quadrature is appropriate. As with the surface integration techniques. sub­
segmentation and variable quadrature order are used to control error. Separate schemes
are employed for singular and non-singular cases. Specific details of this volume integration
algorithm which is identical to the ordinary elastoplastic case can be found in Mustoe
(1984) and Banerjee and Raveendra (1986).

4.5. Sollltion algorithm
The assembly process proceeds as in the thermoelastic case. except that an additional

collocation is required for the volume nodes. Therefore. after assembly. the following two
sets of algebraic equations are produced. based upon (31'1) and (3Ib). respectively:

[A I] : t.x v: = [B I] :Ll.I· \ } - [Q I] :Lla" v: - [G ,: ] :t.l/J'" } +: R '} (3 2a)

where

, I

:R v
: - L ([GV>I "HLlr"}-[F'+1 "]{Lld'}+[Q"1 "]{LlIT""l+[G,>-1 "]:LlI/J""P

" _. ,
(33'1)

v I

:R;:l =: -)' ([Ev>1 "Hl\t"l-[f)\'1 "1:1\11":+[1",1 "l:L\a"":+[Ei>·1 "][LlI/J""}l.
n..,. I

(Db)

repn;sent the c1l'cd of past events. In these questions. all of the matrices correspond to
kernels present in (1). except for [A II and [/J I] which arc formed from [/:1 J ami [G I). The
matrix [1'1) contains the contributions of the jump terms JkI" along with results of the
volume integration of the I'i", kernel. Additionally.

:t1x' l· unknown components of: LlII': and {t.r'],

: t1y V} known components of : t.1I': and: t1t·v l.

At first glance. it may appear that a prodigious amount of work is required to form {R' l
and {R;: at each time step. However. such is not the case because of the nature of the
thermoelastic fundamental solutions which form the basis of all of the kernel functions.
In fact. only a small portion of [G"]. [F"]. [E") and [D"] is time dependent. The remaining
terms vanish from (33), as do the entire [Q"I and [1'''] contribution. As a result. eqns (33)
simplify to the following:

V I

tRY: = - L ([Gi~·1 "Ht.t/'l-[F,;·I "llM":+[Gi;l-I-"j{L\'/Jo"l) (34a)
,,-I

, I

: R;n = - L ([Ei; > I -"]{L\t/,} - [Di;'+ I ·"]{t.W} +[Ei;+ I "]{L\I/Jo"l-). (34b)
,,~ I

Thus. convolution is only required for the !lux. temperature and body source contributions.
and the entire boundary element formulation becomes extremely attractive for thermo­
phlstic analyses.

The solution of (32) requires the complete knowledge of the incremental initial stresses
and heat sources in the plastic region. Since these items are not known II priori. an iterative
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v = 0.33.

scheme must be introduced. In the present work. an algorithm. developed originally by
Ahmad and Banerjee (\990) for transient dynamic plasticity. is employed.

It should be noted that in this iterative scheme. the non-linearities enter the formulation
entirely through the right-hand side contributions from the initial stresses and body heat
sources. As a result. the system matrix [A I]. which must be decomposed. remains identical
to that used in the comparable boundary-only thermoelastic analysis.

The algorithm can also provide solutions for steady-state thermoplasticity. In such
problems. time becomes strictIy a pseudo quantity. Consequently. the inelastic dissipation
effects vanish. the kernels simplify considerably. and convolutions are no longer required.
Since. in practical terms. steady-state thermoplasticity is an important subset of the general
theory. a streamlined algorithm for this static problem has been included in the numerical
implementation.

5. APPLICATIONS

5.1. SimI' /1I:atin.q alan aluminulI/ Mock
As a first demonstration example. the slow heating of a partially restrained aluminum

block is considered. A I in. x I in. x I in. block. resting stress free at OF. is constrained
against lateral deformation in the X and Z directions. but permitted to c1ong'lte freely in
the Y direction. The face at r = 1.0 in. is elevated very slowly to a final temperature of
200 F. while the remaining five faces are insulated. For this example. it is assumed th'll the
rate of heat input is such that the ste'ldy-state thermoplastic formulation applies.

The following standard thermoelastic material properties for aluminum are utilized:

E = 10 X 101
• psi.

~=13xlll·h F- I
•

k = 25 in. -lb. (s in. F) I. /lC'" = 2011 in. -lb. (in ..1 F) I.

In addition. to obtain the thernlOplasti<.: response. the aluminum is modeled as a temperature­
independent von Mises material with iSlltropi<.: hardening. A yield stress of 10.000 psi is
specified. along with a constant hardening modulus of 2 x IO h psi representing the slope of
the uniaxial stress· plastic strain curve.

A simple six-element. 20-node boundary clement mesh is employed along with a single
20-node volume cell. A steady-state 'Inalysis is then performed with GPBEST at five distinct
temperatures r'lnging from 100 to 200 F. In addition. for comparative purposes. this
same problem is examined using BEST3D. the three-dimensional boundary element code
developed for NASA (Wilson ('/ al.• 1984. 1986). In BEST3D. the temperatures throughout
the body must be specified a priori. These temperatures arc then included as body forces in
the volume integrals.

From Figs 4 and 5. it is evident that GPBEST precisely reproduces the deformations
and stresses obtained from BEST3D. thus validating the present thermoplastic formulation.
Notice that in these figures. the thermoelastic solution is also plolted for reference. Of
course. with thermoplastic effects included. increased elongations and greatly reduced
contining stresses result.

5.2. Slu!tle1llteati1l.CJ ofa/l alumi1lum Mock
Ncxt. the same aluminum block is investigated under quasistatic conditions. In the

prescnt problem. with the block initially .It zcro temperature. thc face at r = 1.0 in. is
suddcnly raiscd to 200F. This. of course. triggers a transient hC.lt conduction process.
Thus. the full time-dependent thermoplastic algorithm is utilizcd. The remainder of the
boundary conditions. along with the material properties and boundary clement model. arc
identical to thosc prescribed in the previous problem.

Once again in addition to the GPBEST analysis. the problem was examined with
BEST3D. In the latter instance. exact temperatures. based upon the solution defined in
Carslaw and Jaeger (1947). were input for each nodal point. Figure 6 displays the total
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elongation of the hlock as a function of time. Slight tkviations occur during the first few
times steps due primarily to inaccuracies in modeling the early stages of this sudden thermal
ditfusion process. [Sec Dargush and Banerjee (199 I) for a full discussion or this difliculty.1
In general. however. the t:orrelation is good. As expet:ted.the t:orrelation of confining stress
is not l.juite as good. From Fig. 7. ohviously consitkrahle deviation is present during the
initial few seconds. Arterwards. as the GPBEST temperatun: prolilc approaches the exat:t
solution. the stresses from GPIlEST and IlFST3D correspond within a few per cent. If
more accuracy is desin:d in the early stages of the process. additional mesh and time step
refincment is in order.

5.3. ResidulII stress in II steel cl'!inclt'r
The tinal example involves determination of the resiuual stresses resulting from the

rapid cooling of a long. 2.5 in. uiameter steel cylinder. This cylinder is initially in a stress­
free state at 1250 r. and then suuuenly exposeu to an XOF tluid. A film cocf11cicnt or,,= 12.25 in.-lb. (s in.! F) I is specifkJ on the cylindrical surface for the ensuing
convective process.
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Fig. 5. Slow heating or an aluminium hlock -confining stress.
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The following standard thermoelastic material properties are employed for 1060 steel:

E = 30 x 10' psi, v = 0.30,

!X=6xI0 I"'F- I ,

k = 5.8 in. -10. (s in. "F) I pCr. = 2liJ in. -10. (in..1 F) '.

Additionally, a temperature-dependent thermoplastic constitutive model is adopted. In
particular, the dcfinitions in eqns (I) and (4) apply, with O'y =48 ksi and 0m<ll = 1300 'F.
Zero hardening is assumed.

The boundary clement surl~lce model, displayed in Fig. 8, consists of 38 source points
and 12 clements, while the complete description of the interior requires one extra node and
three volume cells. After some numerical experimentation, a time step of 4 s was selected.

Figure 9 shows the temperature response as a function of time for the surl~lce (r = 1.25 in.)
and center (r = 0) of the cylinder at mid-height. Me'lI1while, axial stresses at those same
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Fig. 7. Sudden heating of an aluminium block-confining stress.
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locations arc traced in Fig. 10. Notice that rapid cooling of the surface occurs during the
tlrst few seconds. This produces tensile stress in the outer portions and compression toward
the center. However. throughout this initial period. the material remains quite hot, and
consequcntly. has a relatively low yield. As a result. signifie<tnt plastic deformation occurs.

After the beginning 10 s. the yield stress is elevated considerably and the all important
thermal gradients diminish. so that no further plastic now takes place. Instead. elastic
unloading commences. At about the 40 s mark. the axial stresses change signs. Thus. the
outer libers gn intn cnmpressions. while tension occurs in the ccntral portion. This trend
continues to steady-state. although for the present analysis. the problem was terminatcd
aftcr the cylindcr cooled for XO s. At that time. the axial stress on the surrace and at the
center arc - 20.5 and + 21.1 ksi. respectively. Of course. thc magnitudes of the residual
stresses at steady state would be slightly higher.

6. CONCLUSIONS

A new boundary element method was developcd for quasistatk: problems of thermo­
plasticity. Naturally. with the introduction of nonlinearities. the integral equations can no
longer be formulated strictly in terms of boundary quantities. Volume discretization is
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Fig. 9. Residual stress in a steel cylinder-GPBEST temperature results.
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required. but only in the plastic regions. Often. this nonlinearity may be confined to a small
portion of the body. For those cases in particular. the BEM is an attractive alternative to
finite elements.

A thermally-sensitive von Mises plasticity model with isotropic hardening was derived
for usc in the BEM. While this constitutive model contains some important features of
metal plasticity. it is primarily intended for the purpose of demonstration. In future work.
the model will he replaced by more sophisticated versions whil:h inelude multi-surface
kinematic hardening ;lIld time-dependent phenomena (i.e. creep) at elevated temperatures.
It should be emphasized. however. that even with enhanced material models. the integral
formulation and kernel functions. whil:h arc presented herein. will remain intact.

Details of the numerical implementation have also been provided. Significant improve­
ments arc still needed. however. in the iterative schemes in order to produce a general­
purpose engineering analysis tool. Finally. several numerical examples were presented to
demonstr;tte the validitiy of this thermoplastic BEM formulation. and. hopefully. to create
interest in its continued development.
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APPENDIX: KERNELS FOR THERMOPLASTICITY

This Appendi.\ contains the detailed presentations of all the kernel functions utilized in the three-dimensional
formulation. based upon continuous-source and force·fundamental solutions (Dargush. 19871. For the time·
dependent problems. the following relationships must be used to determine the proper form of the fum:tions
required in the boundary element discretization. That is.

G:,,(X-~)=G,#(X-~.1I~t) for 11=1

G';,,(X -~) = G",(X -~.1I~t)-G'I'(X-~.(II-I)~t) for II> I.

with similar e\pressions holding for all the remaining kernels, In the sp~'Citication of these kernels below. the
arguments (X -~. t) arc assumed.

NI,te that the indices

i. j. k.l vary from 1 to J
:x. {I vary from 1 to 4

II equals 4.

Additionally.

x, cO\'rdin;llI:s of integration pOlOt
~, cIl\'rdinates of field point

)'i": .\",-.;, r~ =Y,Y,·

For the displacement kernel.

1 1 [(1'1') JG, = --' ' '. -- . ";: + ('l, )(3 -4\')
, 16rrr /1(1-1') _ r '

whereas. for the traction kernel

f:" = ()

In the above.

" = rlkl) I ,

C = kipI',

~ f,'('rI(:) = ~ e-': ..Ix = l-erIc(:)
.../rr "

I j .("),, -.' ,"(,,l = '" 2: - fie
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. (") 1Jr I ( " ).'I~(") == erjc 2 + 7-

.'1\(,,) == t'rfi{~)

. (") 6h ,(,,)
}$(") == erfi' :2 +~

. (") 2hd,,1[1(") = eric 2 +~

/8 = [-hl(")'

where

565

and Ihe prime. '. represents a derivative with rl:spcct to ". Thus.

" Nh('1l
} 6 == --,' '-.r,,,

Additionally. for Ihc volulllc kernels

where

i'!G" iJG"
ux. = -J~-;

with


